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Abstract—Mobile crowdsensing (MCS) is a new and promising

tool in urban sensing. It exploits a crowd of smartphone-carried

mobile users and transfers their sensory data to requesters who

usually publish spatio-temporal tasks of sensing city area. In real-

ity, mobile users can probabilistically move in the sensing region

in their daily mobility and stay there for a period of time; and

then these probabilistic users can be recruited to collaboratively

perform MCS sensing tasks. Such an MCS depending on the

probabilistic collaboration of mobile users is usually called non-
deterministic MCS. In this paper, we focus on the budget-feasible

user recruitment (BFUR) problem in non-deterministic MCS,

which is the first work to maximize the requester’s utility under a

given budget constraint. Because of the NP-hardness of BFUR, we

reformulate it as a monotone submodular maximization problem

and propose a greedy algorithm (called uMax) with provable

constant-factor competitiveness. Unlike previous works for non-

deterministic MCS, however, this paper specially puts effort on

predicting the mobility patterns of users, especially their stay

time in requester’s sensing region, and then designs an effective

predictor based on bi-directional long short-term memory neural

network. Such a prediction of user’s stay time not only connects

the BFUR problem modeling defined in this paper and the actual

mobility uncertainty of users, but also can apply to any non-

deterministic MCS campaign that depends on the knowledge of

user’s stay patterns. We finally validate the performance of the

proposed predictor under a real-world dataset of wireless mobile

networks, and evaluate algorithm uMax by comparing it with

two other baseline algorithms.

Index Terms—Mobile Crowdsensing, user recruitment, user

mobility prediction, LSTM neural network, submodular maxi-

mization.

I. INTRODUCTION

Recently, most smartphones have built-in sensors that can
measure motion, orientation, light strength, and other environ-
mental conditions. The popularization of smartphones enables
a new sensing paradigm, which is called mobile crowdsensing
(MCS) or participatory sensing [1], [2], [3], [4]. Generally,
an MCS campaign involves three types of components: the
requester, the platform, and the user (also called participant).
The requester publishes sensing tasks to the platform which
manages to recruit smartphone users to complete these tasks;
once the users recruited or chosen returns their sensory data
to the platform or the requester, they will receive rewards of
some type. Mobile crowdsensing is considered as a promising
means of monitoring urban area [5], [6], [7].
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Fig. 1. An example of the user recruitment in non-deterministic mobile
crowdsensing, in which gray circles represent requesters’ sensing regions and
dashed lines, users’ trajectories.

User recruitment or user selection is an essential part of
MCS application, because it dominates the service quality that
the platform can provide to the requester. In this paper, we con-
sider a more realistic MCS scenario called non-deterministic
MCS. Unlike previous work, the non-deterministic MCS re-
cruits probabilistic users who move into sensing regions with
some probabilities because of their uncertain or irregular
mobility; and consequently, multiple potential users as to a
given sensing region are needed to be recruited to perform the
sensing task in a collaborative way. Fig. 1 profiles the non-
deterministic MCS scenario considered in our study, which
involves a platform, a requester, three potential users (u1, u2,
and u3) registering in the platform. The requester is concerned
with the signals or events occurring in two regions, R1 and
R2, and such a region is called a region of interest (RoI).
And then the requester publishes to the platform two timed
sensing tasks (⌧1 and ⌧2) and each task is associated with
a distinct RoI; in this example, each task is to monitor the
events that will come up in the associated RoI from 9:00 am
to 10:00 am. Additionally, the requester requires the mobile
participants to stay in RoIs for at least 30 minutes in total,
aimed at acquiring sufficient spatio-temporal sensory data. Of
course, the requester will pay the users as much as they charge
if they are recruited to participate in MCS campaign. If the978-1-5386-6808-5/18/$31.00 2018 IEEE



platform knows the exact trajectories of the three users in
the one-hour task interval (9:00 am-10:00 am), then it can
determine the stay time of each user in given RoIs and make
more desirable recruitment. In Fig. 1, we assume that within
the given task interval, users u1 and u2 will stay in RoIs R1

and R2 for 60 and 35 minutes, respectively, and that user
u3 will stay in RoI R1 for only 15 minutes. In such a case,
a desirable recruitment is one that assigns users u1 and u2

respectively to tasks ⌧1 and ⌧2, excluding u3, because u3 has
a low probability of moving in R1 and cannot offer a stay
time expected by requester.

In reality, however, it is hard for the platform to certainly
know whether the user will move into requester’s RoIs and
whether the user’s actual stay time qualifies to participate
in the MCS campaign. In other words, the users’ mobility
and the distribution of their stay time in the task interval are
both non-deterministic before such an MCS campaign starts.
So, it is a crucial challenge for the platform to provide the
requester with desirable service quality in an MCS campaign
depending on non-deterministic users. On the other hand, in
such a non-deterministic MCS, the requester naturally tends
to ask a question: how well can my tasks be performed with
a given budget, or is my budget enough to trade off a service
with the quality as expected? To answer the question raised
by requester or to systematically and effectively fulfill MCS
campaign, the platform needs to dedicate to accomplishing two
tasks: (1) to predict the probability that every user can move
into requester’s RoI in the task interval and stay there for a
period of time needed by the requester, and (2) based on the
obtained spatio-temporal stay characteristics of the potential
users, to select proper users such that the requester’s utility
can be maximized under the budget constraint.

In this paper, we focus on the budget-feasible user recruit-
ment problem (BFUR) in non-deterministic MCS scenario, and
in particular, we study the accurate prediction of user’s spatio-
temporal stay characteristics, which provides the parameters
necessary for the BFUR modeling. In the past of few years,
there have been a lot of works focusing on user recruitment or
task allocation in MCS. But most of them assume that user’s
trajectory is deterministic, that is, the platform exactly knows
which users can participate in the sensing tasks issued by
requester. Such an assumption is reasonable only when the
sensing cycle has a long time span, such as a few weeks or
even longer. On the other hand, several recent works consider
non-deterministic MCS scenarios, yet they merely assume that
the mobility patterns of user are known a priori, without
paying attention to characterizing users’ mobility patterns
during MCS campaign. In fact, mining or prediction of human
mobility is also a hot topic in the communities of social
networks and wireless mobile networks. However, the already-
existing related works usually focus either on predicting
where a user is likely to move in the future, or on profiling
user’s spatial trajectory. These works cannot effectively yield
user’s spatio-temporal stay characteristics (parameters) that
are highly needed to formulate the proposed BFUR problem.
More specifically, the major contributions of this paper are as

follows.
• To the best of our knowledge, this is the first work to

investigate the BFUR problem to maximize the utility of
requester with a budget constraint in non-deterministic
MCS. We prove the NP-hardness of the BFUR problem.

• We reformulate the BFUR problem as a budgeted sub-
modular maximization problem with knapsack constraint.
We then propose a greedy algorithm, called uMax, which
can achieve an approximation ratio of (1 � 1

e ) with
polynomial time complexity.

• We first employ the bi-directional long short-term mem-
ory (BLSTM) neural network to predict user’s spatio-
temporal stay as to requester’s sensing tasks. Besides
yielding parameters necessary for the BFUR model, such
a prediction about user mobility pattern can also serve as
a key component in any MCS involving non-deterministic
users.

• We use a real-world trace to evaluate the BLSTM-based
approach to predicting user’s stay characteristic, and we
conduct extensive numeric experiments to compare uMax
with two baseline algorithms. The experimental results
demonstrate the significant performance of our designs.

The remainder of this paper is organized as follows. Section
II defines the problem to be addressed and analyzes its
challenges. Section III presents a BLSTM network model to
predict the mobility of user and a greedy algorithm for the
BFUR problem. Section IV involves extensive experiments to
evaluate our designs. Section V introduces the works related
to our study. Section VI finally concludes this paper.

II. MODEL AND PROBLEM

A. Description of Problems

We consider a general MCS scenario with non-deterministic
mobile users, which is described as follows. There is a set
U of m mobile users who register at the platform and are
potential participants of the MCS campaign to be scheduled
by the platform. A requester publishes to the platform a set T
of n tasks which have the same starting time t↵ and ending
time t� . Let T = (t↵ � t�) and call T the task interval.
For each task ⌧j , the requester specifies a region of interest
(RoI), denoted by Rj ; and specifically, task ⌧j is said to be
executed when some mobile user can stay in Rj for a period
of at least Tmin(Tmin < T ) and return his sensory data.
Assuming the RoI of each task ⌧j is a disk of radius rj ,
we use a tuple hRj , rj , t↵, T, Tmini to characterize the spatio-
temporal property of ⌧j . Since the potential users may be non-
deterministic in location and stay time, the requester usually
expects to know, when she publishes her tasks, how well her
tasks will be executed if her payment to the platform is not
beyond a budget B.

We assume that the platform has the information about all
the registered mobile users, including their historical trajectory,
their current location, their cost (bid) for participating in the
upcoming MCS campaign. After receiving the description of
requester’s tasks, the platform first sets about predicting the



TABLE I
MAIN NOTATIONS FOR THE BFUR PROBLEM

Parameter Description
U the set of available users in the platform
T the set of sensing tasks published to the platform
C the set of costs of the tasks in T
Rj the region of interest of task ⌧j 2 T
rj the radius of Rj

T the task interval
Tmin the minimum stay time required by the sensing task
t↵ the start time of sensing task
pij the probability of user ui moving into Rj after t↵ and

staying there for a period of at least Tmin

P the set of probabilities pij for ui 2 U and ⌧j 2 T
B the budget for an MCS campaign
⌫j(·) the utility function for task ⌧j
⌫(·) the utility function for the requester

users’ mobility characteristics—computing pij , the probability
that each user ui 2 U will move into RoI Rj of task ⌧j
after time point t↵ and will stay there for at least Tmin. Let
P = {pij} where 1  i  m and 1  j  n. And then, with
P,U , and T as input information, the platform determines
a user recruitment or selection such that the tasks of the
requester can be executed with as a large utility as possible
while not violating the budget. In this paper, therefore, the
platform needs to carry out two tasks: determining parameters
pij as accurately as possible and selecting a proper subset of
users to maximize the utility of requester. Followed are three
definitions that collectively formulate the user recruitment
problem to be addressed in this paper.

Definition 1. Utility of Task. For non-deterministic mobile
crowdsensing, we define the utility of a task ⌧j 2 T with
the probability that it can be executed successfully in a
collaborative way. Assume that a subset U+j of U is assigned
to ⌧j and denote the utility of ⌧j by ⌫j(U+j), which can be
written as

⌫j(U+j) = 1�
Y

ui2U+j

(1� pij) (1)

Clearly, the utility ⌫j(U+j) of task tj is an increasing set
function on 2U , and it ranges in (0,1].

Definition 2. Utility of Requester. If a requester submits to the
platform n tasks (n � 1) and a subset U+ of U is selected to
execute these tasks, then we define the utility of this requester
with ⌫(U+) given in Eq. (2), in which U+j is the set of users
who can execute task ⌧j and set U+ is the union of all non-
empty U+j .

⌫(U+) =
X

⌧j2T
⌫j(U+j) (2)

The utility of a requester, ⌫(U+), can be interpreted as the
total fulfillment achieved by user set U+ on all the tasks of that
requester. Furthermore, ⌫(U+)

n represents the expected number
of tasks that can be successfully executed in a single MCS
campaign.

Definition 3. Budget-Feasible User Recruitment Problem
(BFUR). In a mobile crowdsensing campaign, a requester

publishes a set of tasks. The platform aims to select a subset of
users such that the utility of requester is as large as possible,
while the total payment to the users chosen is not beyond a
predefined budget.

Formally, the BFUR problem can be formulated as the
following integer programming model, which involves a non-
linear objective function and a linear (knapsack) constraint
function.

max : ⌫(U+) (3)

st.

X

ui2U+

ci  B (4)

where ci represents the cost that user ui asks for if it is selected
to perform the requester’s tasks. We assume

P
ui2U ci > B;

otherwise, the platform can provide an optimal utility of
requester, merely by recruiting all potential users, without
concerns about the violation of budget B. The parameters as
to the proposed BFUR problem are given in Tab. I.

B. Challenges
We will first prove the NP-hardness of the BFUR problem

and then demonstrate the necessity of user mobility knowledge
in mobile crowdsensing user recruitment.

Theorem 1. The BFUR problem is NP-Hard

Proof: We prove this theorem by a straightforward reduc-
tion to the budgeted maximum coverage problem (a proven
NP-hard problem). Denote by Ti the set of tasks that user
ui can execute, and then we obtain a collection of sets
� = {T1, T2 · · · Tm}, for a given BFUR problem with m users.
And, associate each set Ti with the cost of ci 2 C. We consider
a special case of the BFUR problem, where (1) P = {pij =
1 | ui 2 U and ⌧j 2 Ti} , (2) C = {ci = b | b > 0 and ui 2 U},
and (3) b < B < b⇥m.

Once user ui is chosen by the platform in this case, for
any task ⌧j 2 Ti, we will always have ⌫j({ui}) = 1. For
this special case of BFUR, therefore, maximizing requester’s
utility is equivalent to maximizing the number of tasks that
can be executed (or covered) under the constraint of budget
B. For any task ⌧j , furthermore, we associate ⌧j with a weight
wj = 1. By doing so, the special case presented here will then
be reformulated as a standard budgeted maximum coverage
problem [8]: it aims at maximizing the total weight of tasks
(elements) covered by the subset of �, while the total cost is
not beyond budget B. Since the budgeted maximum coverage
problem is a well known NP-hard problem, we can conclude
that the general BFUR problem is at least NP-hard.

The BFUR problem is computationally intractable; besides,
achieving reliable user recruitment optimization in reality
faces another challenge—determining which user can exactly
execute the tasks published by requester. In other words, the
platform has to carefully consider how to accurately estimate
parameter pij , the probability that user ui can stay in the
RoI of task ⌧j for a period of time needed. Strictly, the



TABLE II
MAIN NOTATIONS FOR THE BLSTM MODEL

Parameter Description
◆t the output vector of the input gate at timestep t
�t the output vector of the forget gate at timestep t
!t the output vector of the output gate at timestep t
✓t the output vector of the internal state at timestep t
ht the output vector of the hidden layer at timestep t
yt the output vector of BLSTM at timestep t
W the weight matrices of the corresponding units
s the sequence of user u’s historical stay time at hR, ri
xt the input vector at timestep t, used as input data for BLSTM
zt the label vector at timestep t, used as input data for BLSTM
K the number of classes (labels) that equally segment the task

interval T
Ck the k-th class representing that the stay time of user in some

RoI ranges in
⇥
k�1
K T, k

K T
�

S the training dataset
X the input data (containing the data needed both by training

and by prediction)
l the look-back windows size of the input vector
L the Cross-Entropy loss function

platform cannot entirely make sure whether a user will move
to or stay in a given RoI. Therefore, most works on user
recruitment assume that parameter pij is exactly known in
advance, skipping over its determination. In practice, however,
the prediction of user’s stay time is more challenging than
that of user’s future location. Until now, there is still lack of
effective approaches.

III. DESIGNS

Before presenting a greedy algorithm for the BFUR prob-
lem, we first make prediction of the user mobility—to ob-
tain the probabilistic knowledge of user’s future mobility
characteristics—which are necessary parameters for modelling
the BFUR problem.

A. BLSTM-based Prediction of User Mobility

The recurrent neural network (RNN) approaches [9], [10]
have limitations on long-term dependency and context general-
ization; such limitations unavoidably degrade the performance
of prediction, and consequently, cannot meet the requirement
of mobile crowdsensing for effective user recruitment. In this
paper, we propose a novel method that predicts the user
mobility characteristics with a bidirectional long short-term
memory (BLSTM) neural network model. Tab. II describes
the major notations for the BLSTM model.

1) Basics of BLSTM: Given an input sequence x, the
standard RNN model recursively computes the sequences of
hidden vectors h and outputs vectors y. The BLSTM model
is a variant of RNN, and it is essentially a network that
is composed of a special type of neuron (also known as
memory block). Each block contains one or more recurrently-
connected memory cells. Each cell involves three non-linear
units: the input gate ◆, the forget gate �, and the output gate
!. Additionally, each cell provides an internal state (memory)
✓ to each gate. These gates collect activation from both inside
and outside the memory block and control cell’s activation.

Specifically, the surrounding parts of a memory cell can
interact with it only through its gates. The equations from (5)
to (9) define how the states in an LSTM layer of memory cells
is updated at every timestep t, where the W terms represent
the weight matrices of the corresponding units [11].

◆t = �(Wx◆xt +Wh◆ht�1 +W✓◆✓t�1) (5)
�t = �(Wx�xt +Wh�ht�1 +W✓�✓t�1) (6)
✓t = �t✓t�1 + ◆t tanh(Wx✓xt +Wh✓ht�1) (7)
!t = �(Wx!xt +Wh!ht�1 +W✓!✓t) (8)
ht = !t tanh(✓t) (9)

Specifically, the hidden layer is split into two separate
layers in forward and backward directions. The positive time
direction data and the negative time direction data are fed
to the corresponding layers, and then after being processed,
both can be concatenated in the same output layer by using
Eq. (10), where the forward and the backward hidden layer
output sequences

�!
h t and

 �
h t are normalized by the softmax

activation function [12], ensuring that all the elements of the
network output vector yt are between 0 and 1, and that they
sum up to 1 on every timestep.

yt = softmax(W�!
h y

�!
ht +W �

h y

 �
h t) (10)

2) Prediction of User’s Stay Characteristics: Before an
MCS campaign can be launched, the requester usually speci-
fies her tasks and their spatio-temporal requirement as well as
total budget. Thus, the platform needs to know which users
will move into requester’s RoIs and stay there for a period
of time at least Tmin; in other words, it needs to predict the
user’s stay characteristics that will be actually reflected after
the tasks are published.

In this paper, we employ the BLSTM model to predict user’s
stay characteristics by answering the following question: how
likely will a user stay in a given RoI for a period of time at
least Tmin? In other words, for any given task ⌧j and user ui,
the proposed BLSTM model outputs the parameter pij needed
by the platform to model and solve the BFUR problem. For
brevity, we omit the subscripts i and j representing the IDs
of user and RoI. Given a task ⌧ , we denote by s the sequence
of user u’s historical stay time at hR, ri. First, the platform
reprocesses s and ⌧ : assembling the first several timesteps
of s into the input vector x, normalizing x to the range of
[�1, 1], and encoding the sum of next few timesteps of s
into a label vector z. Second, the platform keeps iterating to
the next timestep—repeating the previous steps—until all the
available data as to s and ⌧ is included. After these iterations
are completed, the platform yields the training dataset S.
Third, with S as input, the BLSTM can be trained and then
the optimal parameters can be achieved. Finally, at a proper
moment before t↵, the trained BLSTM receives a prior input
and makes a prediction of y = (yk), where yk represents the
estimated conditional posterior probability of class k. Recall
that each class represents the duration of user’s stay. With
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Fig. 2. Example of the BLSTM model that predicts user u’s stay character-
istics at the RoI of task ⌧ , in which task interval T , K, and Tmin are set to
one hour, 4, and 15 minutes, respectively.

doing so, therefore, we can deduce how likely the duration
that u will stay at hR, ri belongs to some class. According to
these classification results and the corresponding probabilities
in y, the platform can then compute p with the specified Tmin

of ⌧ .
Next we take a concrete example shown in Fig. 2 to tangibly

demonstrate the steps of the proposed BLSTM model to
complete training and prediction. In real-world applications,
different tasks may have different demands on Tmin. Thus,
the user mobility prediction cannot simply be modeled as a
binary classification problem. To address this practical issue,
for a single task interval starting at t↵, we set K(K > 2)
classes (also called labels) as to the ranges of the possible
total stay time. We use term Ck(1  k  K) to denote the k-
th class and in detail, Ck represents the probabilistic event that
the total stay time of user ranges in time interval

⇥
k�1
K T, k

KT
�
.

If T = 1 hour, K = 4, and Pr(C2) = 0.23, for example, it is
indicated that the stay time of user (in minute) will be within
[15, 30) with probability of 0.23. Furthermore, our prediction
of user mobility qualifies as a 1-of-K classification problem
on a time-series dataset, and it can return the vector yt↵ . And,
ykt↵ , the k-th element of yt↵ , measures the probability that
the stay time of user can be categorized as class Ck. For any
given Tmin, therefore, we can predict how likely the total
stay time of user will be longer than Tmin, by accumulatively
considering the distribution of ykt↵ .

For such a 1-of-K classification problem, the first step for
the BLSTM model is to assemble user u’s training dataset
S, which is a sequence of input-label pairs (X,Z). More
specifically, at timestep t, the input is a size-fixed vector
xt = (st) with t 2 [t � l, t � 1], where l is the look-back
window size; the label zt, a k-dimensional vector, is equal to
q(
Pt+T

t=t st), where function q(·) encodes the sum of u’s stay
times from t to (t + T ) according to which class it belongs
to. If t = 1, T = 1,K = 4, and s1 = s2 = T

4 , for instance,
q(
P2

t=1 st) = (0, 1, 0, 0). After the above preprocessing, we
can apply a standard supervised learning policy to train the
BLSTM model, aimed at learning the dependency between
the historical data and the future data. In detail, we employ
the Adam optimization algorithm, an extension of the stochas-

tic gradient descent [13], to determine the weight matrices
(termed W ) for the input, hidden and output layers given
in Eq.(5)-(9). Such a training process of Adam minimizes
the Cross-Entropy loss function that measures the difference
between the estimated and the actual stay characteristics of
user. The Cross-Entropy loss function in use is given in Eq.(11)

L(S) = �
X

zt,yt2S
zt log yt (11)

As explained in [14], after the softmax-based normalization
in Eq. (10), the relative magnitude of the network output yt

can be interpreted as an estimate of the posterior probability
of being some class conditioned on all the inputs X:

ykt = Pr(Ck|X)

= Pr

 
k � 1

K
T <

t+TX

t=t

st 
k

K
T

�����X
!
, k 2 [1,K]

(12)

Then the conditional probability that the user’s stay time is
greater than or equal to Tmin can be evaluated with (13).

p = Pr

 
t↵+TX

t=t↵

st � Tmin

�����X
!
�

KX

k=k0

ykt↵ (13)

where k0 is set to dTmin
T/K e + 1, the sequence of the first sub-

interval whose length is not less than Tmin. In the case with
integer Tmin

T/K , we have p =
PK

k=k0 ykt↵ .
The example of Fig. 2 shows the computation of p. With

xt↵ as input, the BLSTM model outputs the estimation results
yt↵ . As K = 4 and T = 60 min, yt↵ is a 4-dimensional vector
and each element of it indicates the probability that u’s stay
time belongs to a sub-interval with 15 min duration. Here, the
resulted yt↵ is (0.01, 0.02, 0.15, 0.82) and k0 = Tmin

T/K +1 = 2.
By summing the probabilities from classes 2 up to 4 in yt↵ ,
therefore, we have p = 0.99. The experimental results in IV-A
show that in most cases, the proposed BLSTM model can
achieve more-than-90% accuracy in predicting the stay time
characteristics of user.

B. Algorithm for the BFUR problem
Since the BFUR problem is NP-hard, we design a greedy

algorithm, called uMax, aimed at obtaining an approximate
solution for maximizing requester utility. Described in Algo-
rithm 1, the proposed uMax consists of two successive phases.

In the first phase, by enumeration, uMax finds out a partial
solution that involves only three users such that the requester
utility is as large as possible. Such a partial enumeration
is a widely-adopted method that helps the greedy algorithm
achieve a constant approximation ratio by sacrificing a bit of
computation time [15], [16], [17]. This phase enumerates out
O(m3) three-user subsets of user set U , where m is the size of
U . For any three-user subset, we need to compute the utility of
each task in order to obtain the requester utility. According to
Definition 1 and Definition 2, therefore, O(n) time is needed
to compute the requester utility provided by any three-user



subset, where n is the size of task set T . Thus, the first phase
of uMax takes O(nm3) time. At the end of this phase, the set
Uk
+ with k = 3 can be determined in line 1 of Algorithm 1.
In the second phase, uMax employs a while loop to greedily

select users from set Uk
\Uk

+ until all the users of Uk are
examined. In each iteration, uMax prefers the user of Uk

\Uk
+

who can bring the largest marginal utility with unit cost.
As shown in line 4, ⌫(Uk

+) represents the current utility of
requester, and ⌫(Uk

+ [{uk}), the expected utility of requester
if user uk would be included into Uk

+. Thus, the difference
between ⌫(Uk

+ [ {uk}) and ⌫(Uk
+) measures the marginal

utility brought by the inclusion of uk. After picking out the
best candidate user uk in line 4, uMax will decide whether to
add uk into U i

+. If the remaining budget is enough for uMax
to include uk, user uk will then be moved from Uk to Uk

+.

Algorithm 1: the uMax algorithm
Input: U , T , P , and C

Output: ⌫ and Uk
+ (a subset of U )

1 Enumerate all possible three-user subsets of U and
determine Uk

+ = {ua, ub, uc} such that ⌫(Uk
+) is

maximized
2 k = 3 and Uk

 U

3 while Uk
\Uk

+ 6= ; do

4 Select a user uk 2 Uk such that ⌫(Uk
+[{uk})�⌫(Uk

+)

ck
is

as large as possible (break tie arbitrarily)
5 if

P
ui2Uk

+[{uk} ci  B then

6 Uk+1
+  Uk

+ [ {uk}

7 end

8 Uk+1
 Uk

\{uk}

9 k  k + 1
10 end

11 return Uk
+ and the corresponding ⌫

C. Performance Analysis of uMax
Theorem 2. Algorithm uMax terminates with the time com-
plexity of O(nm3).

Proof: As analyzed above, the first phase takes O(nm3)
time, and so, we only need to analyze the time complexity of
the second phase. At the beginning of the second phase, the
set Uk is of size (m � 3), and consequently, the while loop
involves O(m) iterations. In the k-th iteration, uMax finds
out the “best” user uk, according to the greedy criterion, and
checks whether or not the budget constraint will be satisfied if
uk is added into Uk

+. There are (m�k) users to be examined
one by one in the k-th iteration. After the best user uk is
determined, the requester’s utility achieved by Uk

+ [ {uk}

can be computed in O(nm) time. Additionally, it takes linear
time to check the constraint feasibility in each iteration, and
then, the while loop terminates with the time of O(nm2).
Combining the two phases, we know that the overall time
complexity of algorithm uMax is O(nm3+nm2) = O(nm3).

Submodularity is defined as a discrete analog of convexity
in continuous optimization. The properties of submodular
function play important role in the combinatorial optimization
and the design of greedy algorithm. Next we prove the
submodularity implied in our problem by Lemma 1.

Lemma 1. The requester utility function ⌫(U) is submodular
for any U ✓ U .

Proof: By the definition of the requester utility function
shown in Eq. (2), we have (1) ⌫(U) formally is a linear
combination of a set of task utility functions, (2) ⌫(;) = 0,
and (3) ⌫(U) > 0 for any U 6= ; and U ✓ U .

Thus we only need to prove the task utility function ⌫j(U) is
submodular for any given task ⌧j . Clearly, the three properties
listed above are also true for function ⌫j(U). Consider two
subsets U1 and U2 such that U1 ⇢ U2 ⇢ U . For any task ⌧j
and a user uk 2 U , we denote by �uk⌫j(U1) the evaluation of
(⌫j(U1 [ {uk})� ⌫j(U1)). Clearly, we have �uk⌫j(U1) = 0
for uk 2 U1. In the case where uk 2 U\U1, we have

�uk⌫j(U1) = 1�
Y

ui2U1[{uk}

(1� pij)� 1 +
Y

ui2U1

(1� pij)

= pkj ⇥
Y

ui2U1

(1� pij)

Similarly, we obtain �uk⌫j(U2) = pkj ⇥
Q

ui2U2

(1 � pij).

If uk 2 U2, we have �uk⌫j(U2) = 0. It is clear to know
that the function of form

Q
ui2U (1 � pij) over domain U is

monotone decreasing for any given task ⌧j . Hence we have
�uk⌫j(U1) � �uk⌫j(U2), which furthermore indicates

⌫j(U1 [ {uk})� ⌫j(U1) � ⌫j(U2 [ {uk})� ⌫j(U2)

for any U1 ⇢ U2 ⇢ U and any uk 2 U . Function ⌫j(U) is
then submodular over the domain of 2U .

Considering the above lemma and the optimization objective
of the BFUR problem, we easily conclude that this problem is
basically a budgeted submodular maximization problem with
knapsack constraint (BSM-KC), which is a special case of
the budgeted maximum coverage problem [15], [18], [16] and
proves NP-hard in [8]. A greedy algorithm [15] was presented
to approximately maximize a non-decreasing submodular set
function with budget constraint, and its performance guarantee
is (1� 1

e ) in the worst case. Inspiring our work, this algorithm
guesses the first three items of the approximate solution, and
then it determines the other items, filling up the remaining
budget. In [15], it is proven that there exists a greedy algorithm
for the general submodular coverage maximization with a
knapsack constraint, which can achieve a competitive ratio
of (1� 1

e ). Since algorithm uMax employs a greedy criterion
similar with [15], it is easy to prove that the approximation
ratio of uMax is also (1� 1

e ). We omit the proof details due
to the page limitation.

IV. EVALUATION

A. Performance of User Mobility Prediction
1) Dataset and Settings: To evaluate the prediction perfor-

mance of the presented BLSTM model, we use the Wireless
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Fig. 3. Performance of the BLSTM-based user mobility prediction

Topology Discovery (WTD) dataset of mobile users [19],
which has also been used in [20]. The WTD dataset involves
the 11-week communication logs of 275 PDAs (users) and
over 500 APs deployed in the campus of University of
California, San Diego. After excluding a few anonymous APs,
we obtained totally 13,215,413 communication logs between
209 PDAs and 197 APs that was recorded from September
7, 2001, to December 7, 2001. Since most of these APs are
location-fixed and their locations are known a priori, we can
treat a RoI to be a disk that covers a set of APs; specifically,
if a user can keep connection with at least one of APs in some
RoI, we say that this user locates in this RoI.

The implementation of our BLSTM model contains three
hidden layers, each including forward and backward layers.
The three layers involve 576, 144, and 72 one-cell memory
blocks, respectively, and all the W matrices involve 628,132
weights in total. The input and the output layer are both four
in size, and both of them are fully connected with the hidden
layers. Functions tanh and softmax are used in the BLSTM
model to serve as the activation functions for the gates and
the output layer, respectively. In experiments, 80% of user’s
historical data was used as the training set, and the remaining
part, as the testing set. The time span of two successive
timesteps was set to one hour, and the task interval T , also to
one hour. The size of the look-back window, l and the number
of classes, K, were both set to four.

2) Results: To directly demonstrate the performance of our
BLSTM model, we picked out a user whose ID is 164 in the
WTD dataset and whose mobility is irregular in comparison
with others’ mobility. With the proposed BLSTM mode and
a given RoI, we predicted the stay characteristics of this user
in each of 70 successive hours and the results are plotted in
Fig. 3(a); in other words, with task interval T set to one hour,
we made 70 repetitive prediction experiments for the selected
user, each with incremental starting times. It can be seen in
Fig. 3(a) that almost all the predicted ranges (classes) of stay
time are consistent with the actual ones.

To comprehensively evaluate our predictor, we set eight
radius-identical RoIs, labeled a, b, c . . .up to h, which are
shown in Fig. 3(b) and have successively greater AP densities.
Here we measure the AP density of a RoI with the number of

APs locating in this RoI divided by the total number of APs in
the whole campus. With the task interval set to a single hour,
we examined the stay characteristics of all mobile users with
respect to each RoI of Fig. 3(b), and the average prediction
results are shown in Fig. 3(c) with a confidence of 0.95. We
can find that the average prediction accuracy achieved for each
RoI is higher than 94%, and that the average accuracies for
RoIs b and h almost reach 100%. Specially, Fig. 3(c) also
shows that the AP density of a RoI puts an irregular but
insignificant impact on the prediction performance.

Fig. 3(d) plots the variation of prediction accuracy for RoIs
with different radii. Different from the RoIs specified in Fig.
3(b), in the experiments for Fig. 3(d), we set 19 RoIs which
are concentric but have evenly incremental radii ranging from
0 to 4,688 ft. The RoIs with radii of 0 ft and 4,688 ft are
two extreme cases, both of which did not cover any AP and
covered all the APs of the WTD dataset, respectively. Fig.
3(c) and Fig. 3(d) collectively demonstrate the robustness of
the proposed BLSTM-based predictor. Interestingly, it can be
seen in Fig. 3(d) that the prediction accuracy is relatively low
for the radius-medium RoIs. For the RoI of radius 2865 ft, for
instance, the average accuracy is 92% and lower than those
achieved for other RoIs with greater radius.

Besides the overall average accuracy shown in Fig. 3(d).
Similar with the observation in Fig. 3(d), the proposed pre-
dictor seemingly works a little better for the RoIs with either
small or large radius than it does for the RoIs with medium
radius. The reasons behind are as follows. With radius-small
RoIs, the user’s mobility can be abstracted with simple and
explicit patterns—some users tend to stay in such RoIs for a
long time, while others often just pass through them without
any transient stay at all. With radius-large RoIs, more and
more users are thought of being kept in such RoIs, even though
they could move all the time without any stop. For the above
two kinds of cases, it is easier for our predictor to make
decisions because of simple and explicit mobility patterns.
For the radius-medium RoIs, however, there are possibly more
complicated mobility patterns, which can neither be “pruned
out” as done in radius-small RoIs nor be “hidden” as done in
radius-large RoIs.
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Fig. 4. Comparison of requester’s utility achieved by the three algorithms with different settings

B. User Recruitment Algorithms in Comparison

For any user ui 2 U and any task ⌧j 2 T in an instance
of the BFUR problem, the proposed BLSTM-based predictor
can employ users’ historical trace data to determine parameter
pij and then P , which is needed by algorithm uMax. In
this subsection we evaluate uMax with extensive numeric
experiments and compare it with two baseline algorithms.

1) Experimental Methodology: One baseline algorithm is
called Random, which continues to randomly select a user
from U until the budget is violated. The other baseline algo-
rithm is called CGB (cost-greedy baseline), which is designed
with an intuitive greedy criterion. In each iteration, CGB
always selects the user with minimum cost, as long as the
updated total cost is inside of budget B. To achieve a fair
comparison, we always input the same parameters (U , T , C,
and P) to the three algorithms, for a given experimental case.
In experiments, we evaluated uMax and two baselines in two
major aspects.

• Requester’s utility rate. Trivially, we can maximize the
utility of requester by recruiting all the users, if we
need not consider the budget constraint. Let ⌫max be
the maximum requester’s utility without considering the
budget constraint, and let ⌫ be the utility of requester
yielded by uMax. We then define the requester’s utility
rate of uMax with ⌫

⌫max
. Similar definition also suits for

baseline algorithms Random and CGB.
• Budget utilization rate. It is defined by the ratio be-

tween the total cost of selected users and the budget
B. Generally, a well-performed algorithm will always
struggle to make full use of the budget for maximizing
the requester’s utility.

In experiments, we considered six cases with different
parameter settings, all of which are listed in Tab. III. We
repeated the experiment for each case 20 times with different
starting times of task interval. The results are plotted in Fig.
4 with 0.95 confidence.

In Tab. III, the Max workload rate puts a limit on the
maximum number of tasks that a user is allowed to execute
in a single MCS campaign. For instance, if it is set to 0.02
and there are 200 tasks, then a user can execute at most four

TABLE III
CONFIGURATIONS IN EXPERIMENTS

Case #user #task range of
user cost Budget

Max
workload

rate
1 100 100⇠250 [1, 8] 0.4 0.02
2 100⇠250 250 [1, 8] 0.4 0.02
3 100 200 [1, 8] 0.4 0.02⇠0.08
4 100 200 [1, 8] 0.2⇠0.8 0.02
5 100⇠250 250 [1, 8] 0.2 0.02
6 250 100⇠250 [1, 8] 0.2 0.02

(200⇥0.02) tasks. In each experiment, the workload rate of
every user is randomly determined from zero to the Max
workload rate, and also, the cost of every user is randomly
determined within [1,8]. The Budget in Tab. III indicates a
way of setting budget B. If it is set to 0.4 and the cost of all
users is totally C, then B is set to 0.4⇥ C in experiments.

2) Results: Fig. 4(a) plots the effect of the number of tasks
on requester’s utility in Case 1. Clearly, Random performs
worst. The requester’s utility achieved by the proposed uMax
is at least 17.8% higher than that by CGB. Additionally, the
performance of uMax degrades slightly as the number of tasks
increases from 100 to 250. Fig. 4(b) shows that for each of
the three algorithms in Case 2, more users can result in higher
requester’s utility. Fig. 4(c) shows the experimental results of
Case 3. It can be seen that with the increase of available
users, the three algorithms all improve their performance.
In repetitive experiments of this case, however, uMax can
keep stable, while two other algorithms experience a little
fluctuation. Fig. 4(a) and 4(c) collectively reveals that when
the number of available users or the maximum workload rate
per user is larger, the platform’s capability of executing tasks
will be stronger, leaving the performance gap between uMax
and the other two algorithms slightly reduced. By Case 4, we
examined the variation of requester’s utility against budget B;
and Fig. 4(d) compares the three algorithms.

V. RELATED WORK

In human mobility-based applications, mining, profiling, or
predicting human mobility characteristics helps to well utilize
the potential value of crowd mobility. A lot of researches have



proposed human mobility models based on human trajectories
[21], [22], [23], mobile phone records (call detail records,
CDRs) [24], [25], and various paradigms of networks (such
as social networks and mobile network) [26], [20], [19]. In
our MCS scenario, however, the prediction target of user’s
mobility is rather different from that of these previous works;
they usually estimate the future locations of mobile users,
without giving further information about how long these users
will stay in the specified region. Next we briefly introduce the
prior approaches to recruiting users or allocating tasks in MCS
applications.

A. User Recruitment in Deterministic MCS

As a crucial challenge in MCS, user recruitment problem
has been extensively explored by many researches. Most of
these works concentrate on deterministic MCS campaign with
an objective that maximizes the system utility or minimizes the
application cost. In deterministic MCS, the platform exactly
knows which users can participate in an MCS campaign.

Marjanovi et al. in [27] present an energy-aware MCS
framework with the basic requirement of sensing quality.
They first qualify the value of each sensor by an individual-
based evaluation function, and then select a predefined number
of the most valuable sensors. Hu et al. in [28] consider a
more flexible user recruitment scenario where tasks can be
executed collaboratively and users are paid according to their
actual sensing load. Yang et al. [29] emphasize the timeliness
of tasks in MCS and formulate a task allocation problem
that aims at minimizing the penalty caused by the delay of
users in collecting sensing data. They then propose a hybrid
genetic algorithm and a hybrid greedy algorithm to solve their
problem. Wang et al. [30] study a multi-sensor assignment
problem in an energy-efficient MCS paradigm, in order to
minimize the sensing energy consumption while guaranteeing
the sensing quality. For the energy-efficient MCS case, Zhao
et al [31] investigate a fair user recruitment framework, which
minimizes the maximum sensing time of each participating
user. They present online and offline algorithms for their
problem. Yi et al. [32] present a fast user recruitment algorithm
to maximize the utility of requesters, yet without explicit cost
constraint. They also prove the linear-time complexity and the
performance guarantee of the algorithm.

B. User Recruitment in Non-deterministic MCS

In non-deterministic MCS applications, the platform often
recruits multiple users and lets them collaboratively work on
each common sensing tasks.

In [33], Zhang et al consider a special non-deterministic
MCS scenario that leverages piggyback in collecting cellphone
users’ data. They profile and predict users’ phone call patterns
by inhomogeneous Poisson processes in each cell tower, then
based on the predicting probabilities, they iteratively select
a candidate who has the maximum utility and stops the
recruitment once the sensing coverage probability reaches a
given threshold. Similar scenario and problems have also been
studied in other works [34], [35], [36], [37], [38]. Li et al. [34]

study the task assignment problem and present both offline
and online algorithms. In their work, however, the sensing
cycle is set to a couple of weeks and the call probability is
roughly defined as the ratio of call times observed. Therefore
the proposed designs only suit coarse-grained sensing tasks
that continue for tens of days or even a few months. Adopting
the same non-deterministic MCS model as ours, Xiao et al.
[39] consider an MCS scenario with probabilistic collaboration
and investigate a user recruitment algorithm with deadline
constraint.

These previous works considering non-deterministic MCS
assume that the probabilistic user participation or the prob-
abilistic collaboration has been evaluated by some means
a priori, and do not pay much attention on how to obtain
such probabilistic parameters needed by the user recruitment,
thereby impacting the systematic practicability of their de-
signs.

VI. CONCLUSION

In this paper, we have studied the user recruitment problem
(BFUR) with a budget constraint in the MCS with non-
deterministic mobile users. The proposed BFUR problem
is solved by the greedy polynomial algorithm uMax with
provable approximation ratio. In particular, to draw a con-
nection between the BFUR modeling and the uncertainty of
mobile users, we have designed a BLSTM network model,
by which we can accurately predict the mobility patterns of
users, especially their stay time characteristics with respect
to given RoIs. The presented approach to predicting the stay
time of mobile users should be quite broadly applicable in
non-deterministic MCS’s. We have also conducted extensive
experiments to evaluate the performances of the prediction
approach and to compare the greedy algorithm with two
baselines. The experimental results demonstrate that under a
real-world dataset, the proposed BLSTM-based method can
achieve more-than-90% accuracy, and that algorithm uMax
outperforms the two baselines in terms of requester’s utility
maximization.
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